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Abstract. A bonded fluid model on a plane triangular lattice is studied. Each
molecule has three bonding directions at angles of 120° to each other and two
possible orientations in each of which its bonding directions point to three of
the six nearest-neighbour sites. If the molecules of a nearest-neighbour pair
have bonding directions pointing towards each other then a bond is formed and
the pair has interaction energy — (e +w), while a unbonded nearest-neighbour
pair has interaction energy —e(e > 0, w >0). For ¢/ < % regions of open
structure short-range order became important at low temperatures and pres-
sures, with each molecule in such a region bonded to three others and one third
of the sites vacant. At higher pressures the predominant low-temperature
configuration is close-packed with all sites occupied.

Calculations are performed, using a first-order approximation based on a
triangle of sites, for e¢/zv = 0 and €fzv = }. Critical points are deduced for
separation into liquid and vapour phases, both without long-range order.
The behaviour of the density as a function of pressure and temperature in the
model resembles that found in fluid water, especially for ¢/w = }. There is a
supercritical region where curves of density against temperature at constant
pressure show turning points, though at very high pressures the density
decreases monotonically, Fore/z = } these turning points are also found below
the critical pressure in the liquid phase.

It is shown that if there are no vacant sites (i.e. at infinite pressure) the
configurational states of the model are equivalent to those of an Ising antiferro-
magnet on the triangular lattice. When vacancies are present, however, the
two models cease to be equivalent,

1. Introduction

In the present series of papers we consider lattice models of fluids in which the
molecules form bonds in such a way that an open structure is necessary for the
achievement of maximum total bonding energy in the assembly. Pressure and thermal
motion tend to promote closer packing and thus break down the open structure,
creating a situation resembling that in water (see, for instance, Eisenberg and Kauz-
mann 1969—pp. 185-9). Although our model is two-dimensional and not complicated
enough to be a realistic one for water, we are able to reproduce some of the main
features of the anomalous behaviour of water density as a function of temperature
and pressure, indicating that this behaviour derives from simple structural considera-
tions.

In a paper on one-dimensional models one of the authors (Bell 1969) gave an
accurate treatment of continuous as well as lattice models and found that, with
appropriate assumptions, similar anomalous behaviour of the density occurred in
both cases though phase separation was, of course, absent at all temperatures above
absolute zero. In the previous paper (Bell and Lavis 1970—to be referred to as I) on
a two-dimensional bonded fluid on a triangular lattice the authors introduced a
bonded structure of the honeycomb type with the remaining sites of the triangular
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Two-dimensional bonded lattice fluids: II. Orientable molecule model 569

lattice regarded as interstitial. No bonding was allowed between interstitial molecules
and those on the honeycomb sublattice. In the present model this restriction is
removed and all sites of the triangular lattice are treated as equivalent. The bonded
open structure now appears as a form of short-range order which is, of course, more
satisfactory in a fluid model. There proves to be a critical temperature and pressure
below which the fluid separates into two phases, both disordered from the long-range
point of view, which we term ‘liquid’ and ‘vapour’. At lower temperatures long-
range sublattice order might appear giving rise to a transition between the long-range
disordered liquid phase and a ‘solid’ or ‘ice’ phase but we shall not investigate this in
the present paper, apart from showing that such a transition does not occur at infinite
pressure. We find a pressure p,, considerably greater than the critical pressure, such
that for pressures greater than p, curves of density against temperature display the
normal monotonic decrease while between p, and the critical pressure such curves
have maxima. Below the critical pressure these density maxima occur in the liquid
phase provided the energy of interaction between non-bonded nearest neighbours is a
sufficient fraction of the bonding energy.

The basic postulates of our model of an assembly of M molecules on a plane
triangular lattice of IV sites will now be introduced. Each molecule occupies one site
so that N-JM sites are vacant. We regard each molecule as possessing three bonding
directions at angles of 120° to each other. A molecule on a lattice site has two orient-
ational states, termed states 1 and 2, in each of which the molecule’s bonding direc-
tions point towards three of the six nearest-neighbour sites. If the sites of the tri-
angular lattice are divided into three sublattices labelled «, B and y then it can be
seen from figure 1 that a molecule on, for instance, an « site points its bonding
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Figure 1. Sublattices of the plane triangular lattice (labelled o, 8 and y) and
orientational states of the molecules.

directions towards the neighbouring B-sites in state 1 and the neighbouring y-sites
in state 2. If bonding directions from each of a nearest-neighbour pair of molecules
point towards each other then a bond is formed. It can be seen from figure 1 that,
for bonds between molecules on «f, 8y and y« site pairs, the first site of each pair
must be occupied by a molecule in state 1 and the second by one in state 2. It is
supposed that the interaction energy for pairs of molecules is confined to nearest
neighbours and is —e and —(e+w) for unbonded and bonded pairs respectively
where € and @ are positive constants. The cooperative property of bonding is built
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into this model since a molecule on, for instance, an #-site and bonded to three
molecules on the neighbouring §-sites cannot break one bond by reorientation without
also breaking the other two. Again the molecule on the a-site cannot be bonded to a
molecule on one of the neighbouring y-sites if it is bonded to a molecule on a S-site
and vice versa.

As usual in theories of lattice fluids it will be assumed that the internal degrees of
freedom of each molecule contribute to the partition function a factor y{(7"), which is
independent of the lattice configuration of the molecules, including in the present
model the distribution of the molecules between the orientational states. It was
shown in I, following Levine and Perram (1968), that by changing w from a constant
to a function of temperature it is possible to include the postulate that each bond
formed by a molecule changes its internal partition function by a certain factor.
However, as in I, we shall put this factor equal to unity and continue to regard w as
temperature independent.

It should be noted that the bonds in the present model are symmetrical and differ
in this respect from hydrogen bonds which have a ‘hydrogen end’ and an ‘oxygen end’.
The water molecule has two hydrogen ‘bonding directions’ and two oxygen ‘bonding
directions’, a property which accounts for the zero-point entropy of ice. A two-
dimensional analogue has been treated accurately by Lieb (1967). Obviously a model
incorporating both the unsymmetrical nature of the bonding as well as the possibility
of ‘holes’ and the formation of open and closed structures is desirable, but would be
considerably more complicated than the one studied here.

2. The open and close-packed structures

In a state of lowest bonding energy of the assembly each molecule is bonded to
exactly three nearest neighbours. If it is then supposed that a molecule on a certain
u-site is in orientation state 1 then from figure 1 it follows that the neighbouring
B-sites must be occupied by molecules in state 2. The neighbouring y-sites must then
be empty while the remaining «-neighbours of these 5-sites must also be occupied by
molecules in state 1, and so on. Continuing over the whole lattice we find a type of
long-range order with all «- and S-sites occupied by molecules in states 1 and 2 respec-
tively and all y-sites vacant. The occupied sites form a honeycomb sublattice (see
figure 2). This type of configuration, with one third of the sites empty, will be termed
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Figure 2. Open structure: honeycomb bond Figure 3. Short-range ordered open
arrangement with y-sites vacant, structures (vacant sites labelled). Note:

scale is smaller than in figure 2.
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an ‘open structure’ and its existence is dependent on the directional and saturation
properties of the bonding. As well as the configuration of figure 2 there are also by
symmetry open structures of the honeycomb type with «- and B-sites respectively
empty. The configurational energy per molecule in the open structure is — (e + w),
when we recall that the energy of each bond is shared between two molecules.

If the assembly has no long-range order but the thermodynamic variables favour
the existence of open structures there will be regions of short-range order correspond-
ing to the three types of honeycomb structure with «-, 8- and y-sites respectively
vacant. This is illustrated in figure 3 which shows three such regions of short-range
order separated by ‘zig-zag’ dislocations. The energy per molecule will now differ
from — §(e+ w) since all molecules on dislocation sites have unbonded first neighbours
and half of them have only two bonded neighbours. Also at temperatures above
absolute zero there will be imperfections not shown in figure 3 in the short-range
order since some honeycomb sites will be unoccupied or occupied by a ‘wrongly’
oriented molecule and some other sites will be occupied. If the temperature tends
to zero with the pressure less than a certain value p, (given below) then the regions
of short-range order will tend to become larger and more nearly perfect and the
configuration energy per molecule will tend to — §(e+ w) as a limiting value.

If each pair of nearest-neighbour sites on the triangular lattice of N sites is regarded
as connected by an ‘edge’ then the edges can be grouped into N equilateral triangles.
From the bonding postulates there cannot be more than one bond to each triangle
so that the bonding energy for a lattice of [V sites must be greater than or equal to
— Nw. The configurations of figures 2 and 3 both correspond to exactly one bond per
triangle of edges (disregarding the boundary of the triangular lattice) and thus to a
bonding energy — Nw. The difference between the energy per molecule in the two
configurations occurs because, in that of figure 2, the number of molecules M = 2N
while, in that of figure 3, M > %N owing to the denser packing along the dislocations.

At low temperatures and high pressures the configuration will tend to what we
term a ‘close-packed structure’ with all lattice sites occupied by molecules. The
non-bonding configurational energy per molecule will now be —3e and from the
considerations of the last paragraph the minimum bonding energy per molecule will
be —w since now M = N. This minimum or ground-state bonding energy will be
realized in, for example, configurations where the bonds are distributed as in figure 2
but the y- as well as the - and B-sites are all occupied. Since the orientations of the
y-site molecules are arbitrary there are 2*¥ such configurations. However, this does
not exhaust the degeneracy of the close-packed ground state since the same bonding
energy would be obtained if in any of these configurations the orientational states of
all o~ and B-site molecules were changed. Each y-site molecule would now be linked
by three bonds to either its neighbouring «-site or S-site molecules. Again with all
sites occupied any configuration with the bond distribution of figure 3 is a ground
state configuration as is also that of figure 4 where the entire lattice is occupied by
‘zig-zag’ chains of molecules, each bonded to two neighbours. In the appendix we
show that there is one-to-one correspondence between the configurational energy
states in the close-packed structure of the bonded fluid and those of a triangular
lattice Ising antiferromagnet, though this correspondence disappears if the fluid
structure ceases to be close-packed. It follows that the degeneracy of the close-packed
ground state is equal to that of the ground state of the antiferromagnet and is thus
equal to exp(0-32306N) (Wannier 1950, Domb 1960). At temperatures above

absolute zero the close-packed fluid structure will only occur at infinite pressure and
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these considerations thus show that no long-range sublattice ordering transition will
occur at infinite pressure.

Since the regions of short-range order will become large as the absolute temperature

T tends to zero, the enthalpies of the open and close-packed structures at 7' = 0
will be the same as in the interstitial model of I. Although in the model of I the
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Figure 4. Type of close-packed structure: zig-zag bond arrangement.

zero-point entropy of the close-packed structure is zero this has no effect on the
comparative stability of the two structures at 7 = 0. Hence the stability conditions
at absolute zero are the same for the present model as for that of I, a point which is
confirmed by the behaviour of the triangle approximation solutions near T = 0 (see
below). Hence the open structure is stable at 7' = 0 for p < p, and the close-packed

structure for p > p, where
w—3e Aw

bo = (2.1)

o Qo
Here a, is the area per lattice site which we regard as determined by the distance of
closest approach of two molecules and hence as a constant, and the last relation defines

Aw,

3. First-order approximation and equilibrium conditions

It is assumed that there is no long-range order so that the distributions of molecules
on the three sublattices are equivalent and the open structure appears as a type of
short-range order. In these circumstances the use of a zeroth-order approximation
would reduce the model to a standard ‘lattice gas’ with none of the interesting prop-
erties associated with the competition between open and close-packed structures. A
method taking account of short-range order is necessary and we choose a generalized
first-order approximation (Guggenheim and McGlashan 1951) based on a triangular
group of three sites, one from each sublattice. The various ways in which such a
triangle can be occupied are shown in figure 5 where a bond is represented by a full
line. The probabilities of the various configurations are denoted by ¢,(¢ = 1, ..., 7)
and the weight or number of configurations with the same probability ¢, is denoted -
by w; Denoting the number density of the lattice fluid by p, these variables are
related by

7

1= > why = by + 6y + 3ihg + ey + 65 + 6ifig + 20f7 (3.1)
i=1
p = M|N = 25+ 23+ 2, + 45 + 6thg + 2441, (3.2)

so that any five out of the seven y; can be chosen as independent order variables,
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Taking ¢ and g as dependent variables we have from (3.1) and (3.2)

g = 1—p—ihy— 4y —hs— 25 (3.3)
he = $(3p — 2+ 2tp1 + 6 — 24). (3.4)
By considering the interaction energy corresponding to each of the seven types of
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Figure 5. Occupational probabilities for a triangle of sites. (Molecules in their
two orientational states and vacant sites or ‘holes’ are labelled 1, 2 and h respect-
ively. Full lines indicate bonds.)

configuration shown in figure 5 we obtain the configurational energy E, in the form
E, = — N{Aw(l —thy — 6y — 3hy — 6ehs — 2efiy) + 3e(2p — Kby — 3ihy — 6fs — 27)}.
(3.5)

Using N triangles of sites to give the correct total number of 3V nearest-neighbour
site pairs, the basic assumption of the first-order method is to write, for the number of
configurations corresponding to a given set of ¢, the relation

7
InQ = Q- N 3w Ing,. (3.6)

i=1

The factor €, is a function of p chosen to give € its correct value when the distribu-~
tion on the lattice is completely random (i.e. at 7' = c0) and it is easy to show that

InQy = 2N{p In(3p) + (1 - p) In(1=p)}. (3.7)
From (3.5), (3.6) and (3.7) we can express the Helmholtz free energy f, pet site as a
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function of p and the independent order variables by the relation

Tl 1y oy thay s, ) = ——. (3.8)

For the equilibrium state we equate the derivatives of f, with respect to the five inde-
pendent order variables ¢, s, iy, 5 and 4, to zero, making use of (3.3) and (3.4), to
obtain

dy by = tr72, Jalths = y2r=1, dafihs = yot, s by = 5,

halhs = yotr (3.9)
where
y = exp(—¢/kT), t = exp(—Aw/kT), r = g fiha. (3.10)
From paper I equation (3.14) we have, again using (3.3) and (3.4),
&fe p
pag = P —fo = 6ep—2kTp In I +3kTp In(r) - £,. (3.11)
p ~p

It is now easy to derive relations between the thermodynamic variables and the
parameter 7. Substituting (3.9) into (3.1) and (3.2) we have

p = a2 $(r)

L—p = gr=20(r) (3.12)
where ¢(#) and 8(r) are polynomials in #, with temperature-dependent coefficients,
given by

B(r) = 2¢{(3+y3t)r2 + (1 + 3y3t)r + 2t}
6(r) = (1+3y%)r2 +4y%tr + . (3.13)
By dividing the first relation of (3.12) by the second one we obtain

P (r)
T ) (3.14)

which, for a given temperature expresses p as a rational function of . Again sub-
stituting (3.9) into (3.8) we have
Jfo = —(6ep+Aw)—kT{(1—-2p) In(1—p)+2p In(}p) —3p Inr + Inb(»)}  (3.15)

which in conjunction with (3.14) expresses f, in terms of 7. Substitution of (3.15)
into (3.11) then gives the simple relation

pay = RT In{0(r) (1 -p)} +Aw = kT In{f(r) (1 —p)t~1}. (3.16)
Finally, using equation (3.15) of paper I, rearrangement of (3.11) yields for the

configurational chemical potential g, the relation

1
2o _fetpa —6e—kT{21n( 2P )—31m}. (3.17)

p 1-p
It is easy to see that the fluid obeys the perfect gas law where p becomes very small.
From (3.14), » approaches zero with p and thus, by (3.13), 6(r) approaches ¢. Hence,
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for very small p,
6(r) ~ t, é(r) ~ 2y%tr, p~ 2%,

o 4yt +t
o)) e

pa, ~ pkT,  pA ~ MkT.

The parameter  may be eliminated numerically between (3.14) and (3.16) to give
points on the (p, p, T) state surface. This has been done for ¢/w = 0 and ¢/w = 1

Also

so that, finally,

Figure 6. Pressure—density curves at constant temperature for ¢/w = }. Each
curve is labelled with the value of #7/Aw. Note that the scale of the diagram is
changed for p > 0-8 to display isotherms in the intersection region.
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Figure 7. Density-temperature curves at constant pressure for ¢/ = 0, Each
curve is labelled with the value of pao/Aw = p/po.
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where it should be noted that when e/w is greater than } the open structure does not
appear at low temperatures and the water-like properties of the model are lost.
Figure 6 shows curves of p against p at constant temperature for ¢/w = I and the
characteristic properties of the state surface are indicated by the intersecting isotherms
on the right-hand part of the diagram, which show that points with the same pressure
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Figure 8. Density—temperature curves at constant pressure for €/ = }. Each
curve is labelled with the value of pao/Aw = p/po.
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Figure 9. Magnitude of chemical potential against temperature for /oo = % and
plpe = 0:04.
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and density can occur at different temperatures. These characteristic properties can be
seen more clearly in the maxima which occur on the isobars shown on figures 7 and 8
where p is plotted against 7" at constant p for e/w = 0 and e/w = } respectively. The
broken parts of the curves in figures 6, 7 and 8 correspond to thermodynamically un-
stable or metastable regions while the straight tie-lines connect liquid and vapour
phases in equilibrium at the same temperature and pressure. For a given pressure the
temperature at which conjugate phases coexist was found by plotting the chemical
potential against temperature. A typical curve is shown in figure 9 where the loop
corresponds to unstable regions and the double-point to the conjugate phases.

Comparison of figures 7 and 8 shows that the behaviour of the model is closer to
that of fluid water when ¢/w = } than when ¢/w = 0. This is physically reasonable
since there are a number of sources of interaction energy between water molecules
apart from hydrogen bonding. For'e/w = 0 there is no apparent density maximum in
the liquid phase on the subcritical isobar shown but a liquid phase maximum is well
marked for e/w = }. Again, for ¢/w = 0 the temperature of the density maximum on
the isobar increases with pressure while for e/w = 1 it appears to decrease very slightly
as it does in fluid water (Eisenberg and Kauzmann 1969, Bridgman 1949).

4. Critical point for liquid—vapour equilibrium
We now give a method of deriving the critical temperature, pressure and density
for equilibrium of high-density (liquid) and low-density (vapour) phases. From
equations (3.16) and (3.14) the pressure is given in terms of the parameter 7 by the
relation
6%(r)

pay — Aw — 2 = o
ep(Mhr) =0 ) = s (1)

Hence, at a given temperature, we may write, using a prime to denote differentiation
with respect to 7,

L _TO&

KT'dp — f(r) dp

o d? g ‘N2 rdr\2 () A
e o o) |6 T e

B fry] J\dp
Now it is not difficult to show from (3.14) that dr/dp is always positive so that a
necessary and sufficient condition for dp/dp and d2p/d?p to be simultaneously zero is

that
fir) =f@)=0. (4.2)

An equivalent condition to (4.2) is

gar* + g’ +qar? + g1 + 4o = 0, 49r° +3qgr® +2g5r + g, = 0 (#.3)
where the polynomials are respectively equal to a factor of f'(r) and its derivative.
The coefficients in (4.3) are given by

Qo =3t% = (12%-0)t, ¢ =3(3by*-at,

gs = 302 —4ay%, g, = ab, a = 3+y°%, b =143y%. (4.4)

Elimination of » between the two relations of (4.3) yields an equation in T, whose

solution gives the critical temperature 7,. The elimination was performed by using
the condition that the two relations of (4.3) have a common root if the Sylvester
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determinant

gs 292 3q; 4qo O 0
0 gs 295 3q1 49, O
0 0 95 295 3q1 44
4, 3¢s 29, g O 0
0 49 3¢5 292 ¢ O
0 0 4q, 395 2¢0 ¢4

- 0. (4.5)

All the elements of the determinant in (4.5) are functions of the temperature, given
by (4.4), and we solved (4.5) numerically to give the critical temperature. The critical
value of » and hence the critical pressure and density were then obtained without
difficulty. Critical values of T, p and p are given in table 1 fore/w = Oande/w = 1.

Table 1. Critical values for the liquid-vapour transition

e/w ch/Aw pcao/Aw = Pc/po Pe

0 0-2611 0-0070 01748
i 2-1927 01927 0-4023

If we regard p, for fluid water as the pressure above which density decreases mono-
tonically with temperature over the whole range then p, is between 1500 and 2000
atmospheres (Eisenberg and Kauzmann 1969, Bridgman 1949) so that p,/p. is
between about 7 and 9. For the orientable model it can be seen from table 1 that
the calculated value of po/p, is about 140 for e/ = 0 but about 5 for e/w = 1. These
values are derived from the first-order triangle approximation and the accurate values
may be rather higher if the trend is in the same direction as that found for the inter-
stitial model of paper I, withe/zv = 0. However, it is clear that as regards this property
as well as those discussed in § 3 above, the ratio e/w = } gives results closer to those
found for water than e/w = 0.

5. The equilibrium state near absolute zero
It is convenient to define a reduced pressure « by
o _p

e o (5.1)

K

At very low temperatures y°¢ <€ 1 and hence equation (4.1) may be replaced by

(2 +4y%tr + t)2
613 + 312+ 6y%tr +1

1-x

(5.2)

In considering the behaviour of the model as absolute zero is approached we shall
consider the three possibilities that the parameter 7 (i) tends to infinity (ii) tends to a
finite non-zero value and (iii) tends to zero.

(i) Suppose 7 = o as T — 0. Then, by (5.2),

7~ G117 (5.3)
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so that, since ¢t — 0, a necessary condition is k > 1 or p > po. It can be seen from
(3.14) that if # — oo then the density p — 1. Thus the result just obtained agrees
with the condition for the stability of the close-packed structure derived by thermo-
dynamic reasoning in § 2,

(ii) Suppose ¥ —rqas T' — 0, where 7, # 0 and v, # . Then since # -0 and

%t — 0 we have, from (5.2),
7ok
6703+ 3742

This result is self-consistent only if « = 1 or p = p, exactly. Then we have

tl—lc

7’02 = 670'("‘3
an equation whose only positive root is 7, = 3+24/3. From (3.14) this gives the
result
p —> 09763 as T —0. (5.4)

(iii) Suppose » -0 as T —0. Then, near T =0, y?tr <t and 7°® <€ %
Hence (5.2) reduces to
(r*+2)°
2+t

tl—)c ~

If #2/t does not tend to infinity then the right-hand side of this relation becomes pro-
portional to ¢, which is clearly inconsistent when « # 0. Hence we must assume
72/t - o0 as T —> 0 and then

r? ~ 31F, (3.5)
Thus, a necessary condition for » -0 as T —-0is « < 1 or p < p,. Using (3.14)

and retaining the terms which may be next in magnitude to the leading ones in both
numerator and denominator, we have

6(r) 5 7+ 32 2 (1+3n) 2 (1437 (5.6)
_ ~ 7 = — ~ — . .
P v o)~ T 36t 3(1+2r+ktr-2) 3(L+2r+ 3
It can be seen at once that p tends to § as T — 0 which is consistent with the condition
for the stability of the open structure derived by thermodynamic reasoning in § 2.

From (5.6), p is greater or less than % just above T' = 0 according to whether 7 is
greater or less than #°/9. Using (5.5), we have

?{ ~ 94/3t 3= 1iD)/2
tPC

which approaches zero with T if « < } but becomes infinite if « > {. Hence in the
range 1 > « > ¥ (orp, > p > %p,) p takes the value 3 at T = 0 and is an increasing
function of T just above T = 0. Hence p must pass through a maximum. On the
other hand, in the range 1 > « (or 1p, > p) p takes the value 3 at T'= 0 but is a
decreasing function of T just above T = 0. Thus p must pass through a minimum
before attaining a maximum. This phenomenon is illustrated by the curves of figures 7
and 8. There is an interesting difference here between the behaviour of the model and
that of fluid water. The density of the latter passes a minimum before attaining a
maximum in the higher part of the pressure range zero to p, (Eisenberg and Kauzmann
1969, Bridgman 1949) while we have just seen that in the model this occurs in the
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lower part of the range. However, it is possible that at low temperatures the fluid phase
in the model may be metastable since transitions may take place at finite pressures to
long-range ordered ‘ice’ or ‘solid’ phases. We hope to carry out further work on this
point,

Appendix. The orientable bonded fluid and the Ising antiferromagnet

There is an obvious resemblance between the bonded fluid model treated here
and an Ising antiferromagnet since in both cases the lowest energy state of a nearest-
neighbour pair is attained with the two molecules in different orientational states.
However, in the antiferromagnet the latter is a sufficient condition, while in the
present model each site of the pair must be occupied by a molecule in a particular
orientational state. For instance, an «f8 bond occurs only if the molecule on the o-site
is in state 1 and that on the fS-site in state 2. Interchange of the molecules’ states
breaks the bond whereas in an antiferromagnet it leaves the pair energy unchanged.
Again, the bonding interaction, unlike the antiferromagnetic interaction, has the
property of saturation in that even if a molecule’s six nearest-neighbour sites are all
occupied it can only form bonds with the molecules on three of them.

In spite of these differences there is a one-to-one correspondence between the
configurational energy states of the present model and those of an Ising antiferro-
magnet on the triangular lattice with suitable energy parameters, provided that no
sites are vacant. (In the present model this close-packed state corresponds either to
infinite pressure or to zero absolute temperature with pressure greater than p,.) If,
in the triangular lattice of IV sites, the 3V edges are grouped into N equilateral
triangles of three edges each then the vertices of each triangle can be occupied either
by three molecules in the same state or by two in one state and one in the other. In
the bonded fluid there are no bonds along the edges if the first case giving an energy
— 3¢ for the triangle. In the second case it can be seen from figure 5 that there is one,
and only one, bond giving an energy — (3¢+w) for the triangle. In the antiferro-
magnet suppose that a like pair of nearest neighbours has energy —e while an unlike
pair has energy — (e+4w). Then if the triangle is occupied by three molecules in the
same state the energy is — 3e while otherwise there is one like pair and two unlike
pairs giving an energy —(3e+w). Thus similar distributions of the two states give
equal energies in the two models. In particular the entropy of the configurational
ground state is the same and for the antiferromagnet this has been shown by Wannier
(1950) to have the value 0-32306 Nk (see also Domb 1960). Since no transition to a
state of long-range sublattice order occurs in the antiferromagnet on the triangular
lattice none can occur in the close-packed structure of the orientable bonded fluid.
This means that no such transition occurs in the bonded fluid if we vary the tempera-
ture at infinite pressure.

The equivalence between the two models disappears if some sites are vacant.
Consider, for example, the bond distribution of figure 2 where each «-site is occupied
by a molecule in state 1 and each B-site by one in state 2, giving a honeycomb struc-
ture of bonds. If the orientational state of each «-site molecule is changed to 2 and
that of each B-site molecule to 1, all «f8 bonds are broken. In the close-packed
structure with all y-sites occupied a bond to a y-site replaces each broken «f bond.
However, with the y-sites vacant no new bonds are formed and the energy of the
assembly increases by $Mw. For an Ising antiferromagnet, on the other hand, the
configurational energy is unaltered by reversal of the orientations of all «- and §-site
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molecules, even with the y-sites vacant. Hence, with vacancies present, similar dis-
tributions of states can give rise to different energies in the two models.
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